Core 1 Polynomials Questions

6 The polynomial p(x) is given by

$$p(x) = x^3 + x^2 - 10x + 8$$

- (a) (i) Using the factor theorem, show that x 2 is a factor of p(x). (2 marks)
 - (ii) Hence express p(x) as the product of three linear factors. (3 marks)
- (b) Sketch the curve with equation $y = x^3 + x^2 10x + 8$, showing the coordinates of the points where the curve cuts the axes.

(You are not required to calculate the coordinates of the stationary points.) (4 marks)

- 6 The polynomial p(x) is given by $p(x) = x^3 4x^2 + 3x$.
 - (a) Use the Factor Theorem to show that x 3 is a factor of p(x). (2 marks)
 - (b) Express p(x) as the product of three linear factors. (2 marks)
 - (c) (i) Use the Remainder Theorem to find the remainder, r, when p(x) is divided by x 2. (2 marks)
 - (ii) Using algebraic division, or otherwise, express p(x) in the form

$$(x-2)(x^2 + ax + b) + r$$

where a, b and r are constants.

(4 marks)

1 The polynomial p(x) is given by

$$p(x) = x^3 - 4x^2 - 7x + k$$

where k is a constant.

- (a) (i) Given that x + 2 is a factor of p(x), show that k = 10. (2 marks)
 - (ii) Express p(x) as the product of three linear factors. (3 marks)
- (b) Use the Remainder Theorem to find the remainder when p(x) is divided by x 3. (2 marks)
- (c) Sketch the curve with equation $y = x^3 4x^2 7x + 10$, indicating the values where the curve crosses the x-axis and the y-axis. (You are **not** required to find the coordinates of the stationary points.) (4 marks)

- 6 (a) The polynomial f(x) is given by $f(x) = x^3 + 4x 5$.
 - (i) Use the Factor Theorem to show that x 1 is a factor of f(x). (2 marks)
 - (ii) Express f(x) in the form $(x-1)(x^2 + px + q)$, where p and q are integers. (2 marks)
 - (iii) Hence show that the equation f(x) = 0 has exactly one real root and state its value. (3 marks)

Core 1 Polynomials Answers

6(a)(i)	p(2) = 8 + 4 - 20 + 8	M1		Finding p(2) M0 long division
	$=0, \Rightarrow x-2$ is a factor	A1	2	Shown = 0 AND conclusion/ statement about $x - 2$ being a factor
(ii)	Attempt at quadratic factor	M1		or factor theorem again for 2 nd factor
	$x^2 + 3x - 4$	A1		or $(x+4)$ or $(x-1)$ proved to be a factor
	p(x) = (x-2)(x+4)(x-1)	A1	3	
(b)	<i>y</i>	B1		Graph through (0,8) 8 marked
		B1√		Ft "their factors" 3 roots marked on x- axis
		M1		Cubic curve through their 3 points
	-4 -4 -4 -4 -4 -4 -4 -4	A1	4	Correct including x- intercepts correct
				Condone max on y-axis etc or slightly wrong concavity at ends of graph
	Total		9	
		1	,	I
6(a)	p(3) = 27 - 36 + 9	M1		Finding $p(3)$ and not long division Shown = 0 plus a statement
6(a)		M1 A1	2	Finding p(3) and not long division Shown = 0 plus a statement
	p(3) = 27 - 36 + 9			
	p(3) = 27 - 36 + 9 $p(3) = 0 \implies x - 3$ is a factor	A1		Shown = 0 plus a statement
(b)	p(3) = 27 - 36 + 9 $p(3) = 0 \implies x - 3 \text{ is a factor}$ $x(x^2 - 4x + 3) \text{ or } (x - 3)(x^2 - x) \text{ attempt}$ p(x) = x(x - 1)(x - 3)	A1 M1 A1	2	Shown = 0 plus a statement Or $p(1) = 0 \Rightarrow x - 1$ is a factor attempt Condone $x + 0$ or $x - 0$ as factor
	p(3) = 27 - 36 + 9 $p(3) = 0 \implies x - 3 \text{ is a factor}$ $x(x^2 - 4x + 3) \text{ or } (x - 3)(x^2 - x) \text{ attempt}$ p(x) = x(x - 1)(x - 3) p(2) = 8 - 16 + 6	A1 M1 A1 M1	2	Shown = 0 plus a statement Or $p(1) = 0 \implies x - 1$ is a factor attempt
(b)	p(3) = 27 - 36 + 9 $p(3) = 0 \implies x - 3 \text{ is a factor}$ $x(x^2 - 4x + 3) \text{ or } (x - 3)(x^2 - x) \text{ attempt}$ p(x) = x(x - 1)(x - 3)	A1 M1 A1	2	Shown = 0 plus a statement Or $p(1) = 0 \Rightarrow x - 1$ is a factor attempt Condone $x + 0$ or $x - 0$ as factor
(b) (c)(i)	p(3) = 27 - 36 + 9 $p(3) = 0 \implies x - 3 \text{ is a factor}$ $x(x^2 - 4x + 3) \text{ or } (x - 3)(x^2 - x) \text{ attempt}$ p(x) = x(x - 1)(x - 3) p(2) = 8 - 16 + 6 (Remainder is) - 2	A1 M1 A1 M1 A1	2	Shown = 0 plus a statement Or $p(1) = 0 \Rightarrow x - 1$ is a factor attempt Condone $x + 0$ or $x - 0$ as factor Must use $p(2)$ and not long division
(b)	p(3) = 27 - 36 + 9 $p(3) = 0 \Rightarrow x - 3 \text{ is a factor}$ $x(x^2 - 4x + 3) \text{ or } (x - 3)(x^2 - x) \text{ attempt}$ p(x) = x(x - 1)(x - 3) p(2) = 8 - 16 + 6 (Remainder is) - 2 Attempt to multiply out and compare	A1 M1 A1 M1 A1 M1	2	Shown = 0 plus a statement Or $p(1) = 0 \Rightarrow x - 1$ is a factor attempt Condone $x + 0$ or $x - 0$ as factor Must use $p(2)$ and not long division Or long division (2 terms of quotient)
(b) (c)(i)	$p(3) = 27 - 36 + 9$ $p(3) = 0 \implies x - 3 \text{ is a factor}$ $x(x^2 - 4x + 3) \text{ or } (x - 3)(x^2 - x) \text{ attempt}$ $p(x) = x(x - 1)(x - 3)$ $p(2) = 8 - 16 + 6$ (Remainder is) - 2 Attempt to multiply out and compare coefficients $a = -2$	A1 M1 A1 M1 A1 M1 A1	2	Shown = 0 plus a statement Or $p(1) = 0 \Rightarrow x - 1$ is a factor attempt Condone $x + 0$ or $x - 0$ as factor Must use $p(2)$ and not long division Or long division (2 terms of quotient) $x^2 - 2x$
(b) (c)(i)	$p(3) = 27 - 36 + 9$ $p(3) = 0 \Rightarrow x - 3 \text{ is a factor}$ $x(x^2 - 4x + 3) \text{ or } (x - 3)(x^2 - x) \text{ attempt}$ $p(x) = x(x - 1)(x - 3)$ $p(2) = 8 - 16 + 6$ (Remainder is) - 2 Attempt to multiply out and compare coefficients $a = -2$ $b = -1$	A1 M1 A1 M1 A1 M1 A1 A1 A1	2 2 2 2	Shown = 0 plus a statement Or $p(1) = 0 \Rightarrow x - 1$ is a factor attempt Condone $x + 0$ or $x - 0$ as factor Must use $p(2)$ and not long division Or long division (2 terms of quotient) $x^2 - 2x$ -1
(b) (c)(i)	$p(3) = 27 - 36 + 9$ $p(3) = 0 \Rightarrow x - 3 \text{ is a factor}$ $x(x^2 - 4x + 3) \text{ or } (x - 3)(x^2 - x) \text{ attempt}$ $p(x) = x(x - 1)(x - 3)$ $p(2) = 8 - 16 + 6$ (Remainder is) - 2 Attempt to multiply out and compare coefficients $a = -2$ $b = -1$ $r = -2$	A1 M1 A1 M1 A1 M1 A1	2	Shown = 0 plus a statement Or $p(1) = 0 \Rightarrow x - 1$ is a factor attempt Condone $x + 0$ or $x - 0$ as factor Must use $p(2)$ and not long division Or long division (2 terms of quotient) $x^2 - 2x$ -1 Withhold final A1 for long division unless
(b) (c)(i)	$p(3) = 27 - 36 + 9$ $p(3) = 0 \Rightarrow x - 3 \text{ is a factor}$ $x(x^2 - 4x + 3) \text{ or } (x - 3)(x^2 - x) \text{ attempt}$ $p(x) = x(x - 1)(x - 3)$ $p(2) = 8 - 16 + 6$ (Remainder is) - 2 Attempt to multiply out and compare coefficients $a = -2$ $b = -1$	A1 M1 A1 M1 A1 M1 A1 A1 A1	2 2 2 2	Shown = 0 plus a statement Or $p(1) = 0 \Rightarrow x - 1$ is a factor attempt Condone $x + 0$ or $x - 0$ as factor Must use $p(2)$ and not long division Or long division (2 terms of quotient) $x^2 - 2x$ -1

(ii) $p(x) = (x + 2)(x^{2} + 5)$ $p(x) = (x + 2)(x^{2} - 6x + 5)$ $\Rightarrow p(x) = (x + 2)(x - 1)(x - 5)$ M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	1(a)(i)	p(-2) = -8 - 16 + 14 + k $p(-2) = 0 \implies -10 + k = 0 \implies k = 10$ Must have statement if k=10 substitute	M1 A1	2	or long division or $(x + 2)(x^2 - 6x + 5)$ AG likely withhold if $p(-2) = 0$ not seen
(c) $\begin{pmatrix} y \\ 10 \\ - \\ 2 \\ - \\ - \\ 2 \\ - \\ - \\ - \\ - \\ -$	(ii)	$p(x) = (x+2)(x^2 - 6x + 5)$	A1	3	factor $(x-1)$ or $(x-5)$ from factor theorem
(c) 10 x $B1$ $M1$ FT their 3 roots marked on x-axis -2 0 1 5 $M1$ $A1$ 4 Correct graph (roughly as on left) going beyond -2 and 5 (condone max anywhere between $x = -2$ and 1 and min between 1 and 5)	(b)			2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<i>y</i>	B1		Curve thro' 10 marked on y-axis
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
(condone max anywhere between $x = -2$ and 1 and min between 1 and 5)				4	Correct graph (roughly as on left) going
Total 11		Total		11	

6(a)(i)	f(1) = 1 + 4 - 5	M1		must find $f(1)$ NOT long division
	f(1) = 1 + 4 - 5 $\Rightarrow f(1) = 0 \Rightarrow (x - 1) \text{ is factor}$	A1	2	shown $= 0$ plus a statement
(ii)	Attempt at $x^2 + x + 5$	M1		long division leading to $x^2 \pm x +$ or equating coefficients
	$f(x) = (x-1)(x^2 + x + 5)$	A1	2	p = 1, q = 5 by inspection scores B1,
(iii)	(x =) 1 is real root	B1		
	Consider $b^2 - 4ac$ for their $x^2 + x + 5$ $b^2 - 4ac = 1^2 - 4 \times 5 = -19 < 0$	M1		not the cubic!
	$b^2 - 4ac = 1^2 - 4 \times 5 = -19 < 0$			
	Hence no real roots (or only real root is 1)	A1	3	CSO; all values correct plus a statem